材料性能测试实验教学大纲(实验课程类)

课程名称: 材料性能测试实验

英文名称: Testing technology of properties of materials

课程编号:

面向专业: 材料类各专业, 材料相关专业

学时学分: 64 学时 2 学分

本大纲主撰人: 庞超明 (Tel: 52090638, E-mail:pangchao@seu.edu.cn)

一、课程作用和具体目标

本实验课程面向全院材料类各专业(包括金属材料、土木工程材料、电子信息材料、先进材料及成形)学生开设。基于材料物理性能、材料力学性能、材料测试技术和试验设计原理与应用等课程,要求学生掌握材料常规的物理性能、力学性能和无损检测技术等方法。通过对比不同材料的相同性能的测试方法,对比相同材料的不同性能的测试方法,使学生深刻理解和应用不同材料的相同性能的不同实验方法,同时掌握不同性能的测试方法,使学生在实验技能和动手能力方面得到系统的训练,以培养从事科研活动严谨的工作作风,培养学生理论联系实际、分析问题和解决问题的能力,提高学生的科研动手能力,为后续课程教学和实验教学打下坚实的基础。

二、课程内容、学时分配与组织

序号	实验项目名称	内容提要	实验性 质	实验类 型	实验 时数	毎组 人数	备注 (难度)
1	材料的硬度实验	掌握金属材料布氏、洛氏、维氏硬度的实验原理和测定方法;了解各种硬度实验方法的特点、应用范围及选用原则		基本型网络	1	1~3	必做(中)
		掌握薄膜材料的硬度测试原理与方法	专业基 础	基本型 网络	1	1~3	必做(中)
		掌握建筑材料的摩氏硬度测定方法,测定不同建筑材料的 摩氏硬度,了解摩氏硬度的等级及代表十种硬度的典型矿 物	专业基础	基本型 网络	1	1~3	必做(中)
2		掌握材料的抗冲击和扭转的性能,了解影响材料抗冲击和 扭转性能的因素	专业基 础	基本型 网络	1	1~3	必做(中)
3	材料的蠕变/徐变/持 久实验	掌握材料在保持应力不变的条件下, 应变随时间延长而增加的现象及应变和时间的关系曲线	专业基 础	基本型 网络	1	1~3	必做(中)
4	材料的磨损实验	熟悉材料的耐磨性,以及磨损程度和速度与时间的关系	专业基 础	基本型 网络	1	1~3	必做(中)
5		掌握并熟练对高温炉的升温速度和恒温的控制, 热电偶的 校准方法及误差评定	专业基 础	基本型 网络	2	1~3	必做(中)
6	材料的线膨胀特性	熟悉材料的升温和长度增长的关系	专业基 础	基本型 网络	1	1~3	必做(中)
7	材料的声学性能实验	掌握不同材料的吸声性能及测定方法	专业基础	基本型 网络	1	1~3	必做(中)
8	材料的导热性能实验	掌握材料导热性能测定方法	专业基 础	基本型 网络	1	1~3	必做(中)
9	材料的电学性能实验	对不同材料的电学性能进行测试,探索不同材料的导电性 能差异	专业基 础	综合性	3	3~5	必做(中)

10	电测法测试混凝土或 砂浆的弹性模量	掌握测定不同材料弹性模量的测定方法(应变片法、蝶式引伸仪),熟悉影响弹性模量的因素	专业基 础	综合型	3	3~5	必做(中)
11	材料的密度测试	测试粉体材料、颗粒材料、块状材料的密度,比较材料密 度的的不同表达方式	专业基 础	基本型 网络	1	3~5	必做(中)
12	材料的粒度表征与级 配优化设计	测定粗细集料的级配以及水泥和掺合料的粒度分布, 根据 密堆积理论,进行材料级配的优化	专业基 础	创新型	2	3~5	必做(中)
13		掌握测定木材的拉伸、压缩、弯曲、剪切等力学性能的方 法,了解各向异性材料的力学性质	专业基 础	基本型 网络	1	1~3	必做(中)
		钢筋的一般拉伸、冷拉和冷拉时效后的拉伸性能实验以及 弯曲实验	专业基 础	基本型	2	3~5	必做(中)
		水泥砂浆或混凝土的劈拉、弯曲和轴压实验	专业基 础	基本型	1	3~5	必做(中)
		材料的力-位移测试与韧性表征	专业基 础	基本型	1	3~5	必做(中)
	材料的无损检测	无损检测混凝土强度(比较回弹法与超声回弹综合法两种 方法的测定结果的差异)	专业基 础	基本型	1	3~5	必做(中)
14		金属无损检测方法(磁粉 MT,渗透 PT,超声 UT)	专业基 础	综合型	4	3~5	必做(中)
		无损检测混凝土强度和缺陷(测定混凝土裂缝宽度、深度 等)	专业基 础	综合型	4	3~5	必做(中)
15	未知牌号的金属材料 的性能评价	利用材料的各种性能,通过对未知品种材料牌号的多种性 能检测,确定材料的牌号并综合评价材料的性能优劣。	专业基 础	创新型	16	3~5	必做(高)
16	混凝土性能综合评估 技术	氯离子扩散性能综合评价:采用不同方法(如 RCM 法、 NEL 法、饱和电导率法、浸泡法等)对比测试氯离子在 混凝土中的扩散性能,同时采用氯离子含量电测法和滴定 法对比检测混凝土中氯离子的含量。	专业基础	创新型	15	3~5	选 1(高)
		非金属材料力学性能综合评估(劈拉、弯曲和轴压、力-位 移测试与韧性表征,无损检测等)。	专业基 础	创新型	15	3~5	
		非金属功能材料物理性能的综合评估(隔音性能、导热性 能等)	专业基 础	创新型	15	3~5	

三、教学管理模式与注意事项

- 1、学生必须完成全部"必做实验"。在此基础上,可根据自己的兴趣爱好、能力强弱和时间多少,进行"选做实验"。
- 2、学生在实验前必须认真预习实验指导书等相关内容。教师在实验前作必要的讲解和辅导。
- 3、学生应严格遵守实验室规章制度和安全规范,确保安全。

四、设备及器材配置

- 1、制样设备:砂轮机、切割机、镶嵌机、水磨机、抛光机、电解抛光仪等。
- 2、加热、温控及加工设备: 热处理炉、坩埚电炉、烘箱、温度控制仪、离心机、小型轧机、大型轧机等。
- 3、分析测试设备: 拉伸机、抗折试验机、抗压试验机、硬度计、体视显微镜、金相显微镜、荧光显微镜、反光显微镜、偏光显微镜、混凝土气孔分析显微镜、放大机、数码相机、计算机、打印机、分析天平、李氏瓶、应变仪、超声波测定仪、导热系数测定

仪、液压万能试验机、摩氏硬度测定仪、线膨胀测定仪、混凝土回弹仪、液体天平、 氯离子扩散系数测定仪、氯离子含量测定仪、、试模、勃氏比表面积仪、粗细集料套筛、 电子万能试验机等。

4、各种耗材若干

五、考核与成绩评定

- 1、采用实验出勤情况、实验及报告完成情况以及笔试考试情况综合考核。
- 2、成绩评定采用百分制评定。其中出勤、实验情况及报告等占50%,笔试成绩占50%。

六、教材与参考资料

- (1) 材料物理性能实验指导书. 南京: 东南大学讲义, 2006.6
- (2) 材料力学性能实验指导书. 南京: 东南大学讲义, 2006.6
- (3) 秦鸿根编 建筑材料试验指导书. 南京:东南大学讲义,2003.10
- (4) 材料力学性能教材
- (5) 材料物理性能教材
- (6) 材料测试技术教材
- (7) 试验设计原理及应用教材:试验设计与混凝土无损检测,北京:中国建材出版社,2006.3
- (8) 睢良兵、王修田等 材料测试技术试验 东南大学讲义, 2007.5
- (9) 庞超明等 材料性能测试实验指导书, 南京: 东南大学讲义, 待编